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Abstract. In the framework of the Scale Relativity Theory, a fractal 

Korteweg-de Vries-type equation for describing dispersive behaviours of any 
complex structure is obtained. In the one-dimensional case, the general solution of 
this equation show that the dispersive behaviours of any complex structure are 
given by means of cnoidal oscillation modes. Through these modes degeneration, 
dispersive behaviours of soliton, soliton-package, harmonic etc. result.  
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1. Introduction 
 
Complex structures are structures in which the collective behavior of their 

components involves the emergence of properties that can be hardly (or not at all) 
deducted from the individual properties of said components. Perhaps the most 
famous quote for what would be defined as a „complex system” (structure) 
belongs to Aristotle: „The whole is more than the sum of its parts”. Therefore, this 
collective behavior cannot be analyzed or predicted only through the (complete) 
knowledge of the properties of individual components (Mitchell, 2009). 
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Complex structures usually consist of many components, which interact 
in various ways with each other and possibly with their environment also. These 
components could form interactions networks. The different types of 
interactions could give rise to new information, making it difficult to separately 
study components or to exactly predict their evolution. Moreover, the 
components of such a system can also be viewed as entirely new systems, this 
leading to systems of systems that are interdependent on each other. Thus, one 
of the core challenges of complexity science is not only to analyze the parts and 
their interactions but also to fully understand how connections form and 
generate a whole (Bar-Yam, 1997). 

In relatively simple structures, the properties of the entire structure can 
be understood from its components addition or aggregation. Therefore, a simple 
structure’s macroscopic properties can be deduced from the properties of its 
separate parts at the microscopic scale. In complex structures, however, we can 
often be in a situation in which the properties of the whole cannot be understood 
or predicted solely based on the knowledge of its components, due to a 
phenomenon called “emergence” (Ball, 2004). 

We must also note that structures (systems) can also be analyzed by 
tracking the changes of their states over time. A state can be described in 
variables sets that characterize a given system. As it changes states, its variables 
also change, as a “reaction” to its environment. We say that the change is linear 
if it is directly proportional to time, the actual state of the system, or 
environmental changes, or that it is non-linear if it is not proportional to them. 
Complex systems (structures) are usually non-linear, changing at different rates 
with respect to their states and environment. They could also exhibit stable 
states at which they can stay the same even if perturbations manifest, or 
unstable states in which the systems can be disrupted by a small perturbation. In 
some rare cases, even small environmental changes can seriously alter a 
system’s behavior. Some systems are chaotic, meaning that they are very 
sensitive to small perturbations and their behavior can be unpredictable, 
displaying a “butterfly effect” (Gleick, 2011). 

Interactions among complex structures’ components can give rise to 
global patterns or behaviors. This can be described as self-organization, because 
no central/external controller exists. Self-organization can generate 
physical/functional structures such as crystalline patterns of materials and 
various morphologies of biological organisms, or dynamic/informational 
behaviors such as the fish’s shoaling behaviors and electrical impulses in animal 
muscles. Sometimes, complex structures can self-organize into a “critical” state, 
which can exist only in a fragile balance between its stochastic and 
deterministic behavior (Ball, 1999). 

Complex structures are usually active and they respond to the 
environment. This adaptation can take place at multiple scales: cognitive, 
through the development of learning and psychological functions; social, like 
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information sharing through social interactions and dynamics; or even 
evolutionary, through genetics and natural selection. In cases when the 
components suffer damage or are removed, such structures are able to adapt and 
recover their previous functionalities, sometimes becoming better than before. 
Complex structures that display such properties are called complex adaptive 
structures (Holland, 1992). 

Complex structures can be found in various domains, such as physics, 
biology, social sciences, finance, politics, psychology, medicine, engineering, 
information technology etc. Many state-of-the-art technologies, applied to social 
media, mobile communications, autonomous vehicles, or blockchains, generate 
complex structures with emergent properties. A fundamental concept of 
complexity science is the idea that different systems in various domains display 
phenomena with common features that can be described using the same 
scientific models – this is called universality. These concepts highlight the need 
for a new multidisciplinary mathematical and computational framework. 
Therefore, complexity science can provide a comprehensive and multi-
disciplinary analytical approach, thus complementing traditional scientific 
methods that focus on specific subjects in each domain (Thurner et al., 2018). 

In this paper we analyze some dispersive behaviors in complex 
structures through fractal Korteweg-de Vries-type equations.  

 
2. Mathematical Model 

 
Let us write the equation of motion in its covariant form (geodesic 

equations) 

( ) ( )( )
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In Eq. (1) we can see that, in any point on a fractal path, the local 

acceleration, ˆ
t∂V , convection, ( )ˆ ˆ∇V V , dissipation, ( )( )2/ 1 ˆFDdtλ − ∆V ,  and 

dispersion, ( )( )3/ 13/2 3 ˆFDdtλ − ∇ V  are in equilibrium. The dissipative and 
dispersive terms in (1) specify that the behaviors of the complex structure are of 
a viscoelastic or hysteretic type. 

Due to the fact that interactions in the complex structure are not present, 
we can practically employ self-convection, self-dissipation and self-dispersion-
type mechanisms (i.e., we can describe the dynamics of any complex structure 
by means of a fractal-type fluid). Thus, the geodesics equations can be 
identified with the complex structure’s streamlines. 
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Using a standard method on Eq. (1), we obtain, at the differentiable 
resolution scale: 
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and, also, at the fractal resolution scale: 
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For irotational motions: 
 

ˆ = 0, = 0, = 0D F∇× ∇× ∇×V V V    (4) 
 
The velocity field can be written as: 
 

( )( )2/ 1ˆ = lnFD-2i dtλ ψ− ∇V     (5) 
 
or explicitly, with ( )exp iSψ ρ= , 
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where ρ is an amplitude and S a phase. 

In this context, ρ=const., and thus Eqs. (2) and (3) take the single form: 
 

( ) ( )( )3/ 13/2 3
ˆ 2 0

3
FDD D

D D D
d dt
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λ −∂
= + ⋅∇ + ∇ =

∂
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Eq. (7) is a generalization of the standard Korteweg-de Vries equation 

for dynamics on fractal manifolds. 
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In order to obtain a solution for VD in the one-dimensional case, it is 
necessary to introduce the dimensionless variables 

1 1 1 1, , , DVt kx M
c

ω τ ξ θ ξ τ= = = − = Φ            (8) 

Then, the solution of Eq. (7) becomes (for details see (Jackson, 1993; 
Merches and Agop, 2015; Whitham, 1974)): 
 

( )
( ) ( )2

02 1 2 ;
E s

a acn s
K s

α θ θ
 

 Φ = + − + −    
Φ    (9) 

 
It follows that a one-dimensional space-time dynamics for the complex 

structure can be obtained by means of the cnoidal oscillations modes of the 
normalized velocity field – Figs. 1a-c and 2a-f. 

 

 
 

 

a 

b 
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Fig. 1 – Three – dimensional (a) and two – dimensional (b, c) cnoidal 
 oscillation modes of a velocity field. 

 
 

 
 
 

Fig. 2 ‒ Fractal behaviors of the normalized velocity field by means of self-similarity. 
Contour plots for various non-linearity degrees. 

 
The physical meanings of quantities from relations (8) and (9) are given 

in (Mercheş and Agop, 2015). In addition, let us note that cn is the Jacobi 
cnoidal elliptical function of modulus s (Armitage, 2006) and argument 
( )0α θ θ−  with 0 const.θ =  

c 

a b c 

d e f 
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The cnoidal oscillation modes have the following characteristic 
parameters: 

i) Wave number  

( )

1
2ak

sK s
π

=     (10) 

   
ii) Phase velocity  
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iii)  Quasi-period (see Figs. 3a,b) 
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Fig. 3 – Quasi period of the cnoidal oscillation modes versus amplitude and 
 non-linearity degree (a); two dimensional contour of the quasi-period (b). 

 
Through degenerations of the cnoidal oscillation modes, it results: 
For s→0, (9) reduces to harmonic package-type sequence (Fig. 4a) 

( )0cosa a kα θ θΦ ≈ Φ + +  −      (13) 
characterized by wave number 

1/22ak
s

≈      (14) 

a 

b 
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Fig. 4 ‒ Pure sequences obtained through degenerations of cnoidal oscillations modes of 
velocity field: harmonic package – type sequence (a), soliton package – type sequence 

(b), soliton – type sequence (c). 
 

a 

b 

c 
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phase velocity 
26 8U a kΦ≈ + −     (15) 

  
and pulsation 

3Ω=2 / 6 8T k ak kπ ≈ + −Φ     (16) 
 

i) For s→1, (9) reduces to a soliton-package-type sequence (Fig. 4b) 
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characterized by wave number 
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( )1/22
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For s = 0, (9) reduces to a harmonic type sequence, while for s = 1 to a 

soliton type one (Fig. 4c). 
The degenerations of cnoidal oscillation modes contain the following 

sequential mixtures: harmonic type sequence – harmonic package type 
sequence, soliton type sequence–soliton package type sequence etc. Such 
situations can be found if we assume that non-linearity s depends on the 
resolution scale. Examples of such types of oscillations can be found in (Nica et 
al., 2012; Pompilian et al., 2013). In the case of a harmonic packet, Eq. (12) 
indicates a chirping type effect (Cristescu, 2008). 

Eliminating the amplitude a, between (10) and (11) we can write:  
 

( ) 2 26 16 ( ),  U A s k πλ
λ

− Φ = =    (21) 

where 
( )2 2 2( ) 3 ( ) ( ) 1 ( )A s s K s E s s K s= − +   (22) 
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3. Results 
 

By analyzing the degenerations of the cnoidal oscillation modes, we can 
see two distinct flow regimes of the dissipative complex fluid: non-quasi-
autonomous regime and quasi-autonomous regime (Fig. 5). In Fig. 5, the value 

0.7s ≈  separates the two flow regimes, as it results from the following 
equation: 

( ) 26U constλ− Φ ≈     (23) 
 

 

 
 

Fig. 5 ‒ Flows regimes of the complex fluid for different non-linearity degrees. 
 

We should note here that the one – dimensional space – time lattices of 
nonlinear oscillators can be associated to cnoidal oscillation modes, i.e. Toda 
lattices (Toda, 1981).  

 
4. Conclusions 

 
Assuming that the motion of complex structures’ particles take place on 

continuous and non-differentiable curves, the geodesics equations in fractal 
space are obtained. In cases in which the dissipative effects are negligible 
compared to the convective and dispersive ones, its flow dynamics are given 
through space – time cnoidal oscillation modes of the complex velocity field. 

Harmonic, harmonic packet, soliton, soliton packet sequences can 
therefore be obtained through space – time cnoidal oscillations modes 
degenerations.  

However, we must stress the fact that nature does not operate with 
the afore-mentioned pure sequences, but with mixture sequences as 
harmonic – harmonic packet, soliton – soliton packet etc. The self-similarity 
of the cnoidal modes specifies the existence of some “cloning” mechanisms 
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(full and fractional velocity function – a function which evolves in time to a 
state describable as a collection of spatially distributed sub-velocity-
functions that each closely reproduces the initial velocity-function shape 
(Aronstein, 1997)). All these show a direct connection between the fractal 
structure of the flow dynamics of complex fluid and holographic behaviours 
(Butuc et al., 2016). 
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COMPORTAMENTE DISPERSIVE ÎN STRUCTURI COMPLEXE 
 

(Rezumat) 
 

În Teoria Relativității de Scală, se obține o ecuație fractală de tip Korteweg-de 
Vries, ecuație utilizată în descrierea unor comportamente dispersive ale structurilor 
complexe. În cazul unidimensional, soluția unei astfel de ecuații este dictată de moduri 
cnoidale de oscilație, prin degenerarea cărora rezultă comportamente de tip soliton, 
pachet de solitoni, armonic etc. 

 


